DESAFÍOS EN EL DESARROLLO DE VACUNAS EN EL SIGLO XXI

Juan J. Picazo Hospital Clínico San Carlos Madrid

.....

DESAFÍOS EN EL DESARROLLO DE VACUNAS EN EL SIGLO XXI

NUEVAS VACUNAS

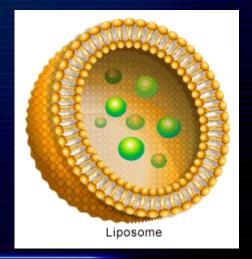
HIV

MALARIA

HEPATITIS C

TUBERCULOSIS

DENGUE


CITOMEGALOVIRUS

VRS

.

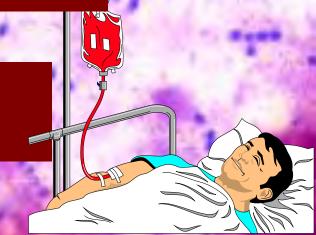
NUEVAS ESTRATEGIAS

Mayor eficacia (influenza...)
Nuevas vías (sublingual...)
Nuevos adyuvantes
Nuevos transportadores (liposomas...)

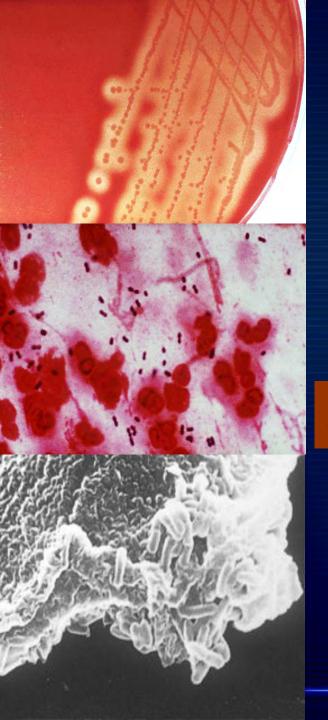
Bacterias: 3.8 x 10⁹ años

Antibióticos: 60 años

Reproducción bacteriana: 500.000 veces más rápida que el hombre


Bacteria pre-antibiótica

Ξ


Dryopithecus (30 millones de años)

40 años: 10¹² kilos de antibióticos Cada bacteria ha estado expuesta a 10¹¹ moléculas de antibiótico

1/3 de los pacientes hospitalizados reciben al menos 1 antibiótico

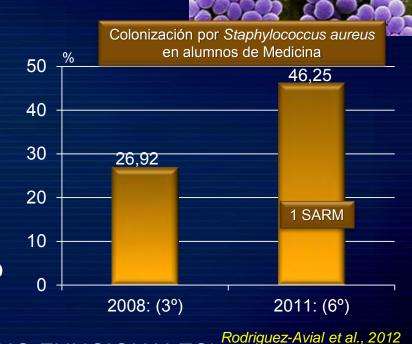
En el 50% de los casos la prescripción es inapropiada

Un patógeno muy importante:

Staphylococcus aureus

Staphylococcus aureus

20-25% de la Infección nosocomial


x3 la Estancia Hospitalaria

x5 el Riesgo de Mortalidad

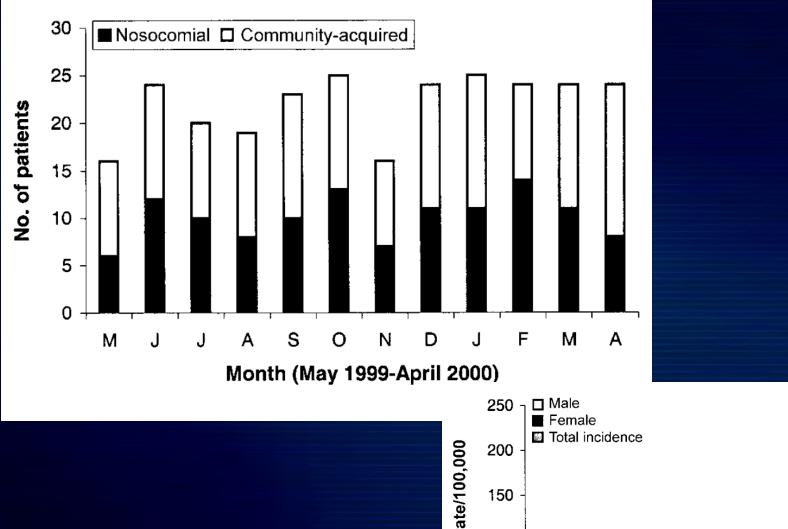
Mortalidad hospitalaria: 25%

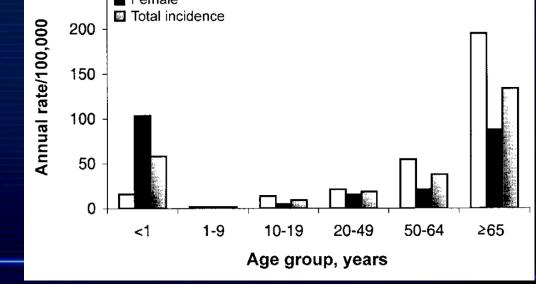
Incidencia 600/100.000

España: >270.000 casos al año

COLONIZACIÓN

Puede ser permanente (tenemos Ac. NO FUNCIONALES)

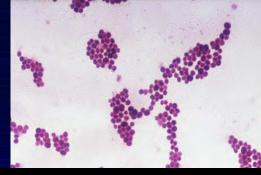

> VACUNA


Defectos en neutrófilos

INFECCION (celular)

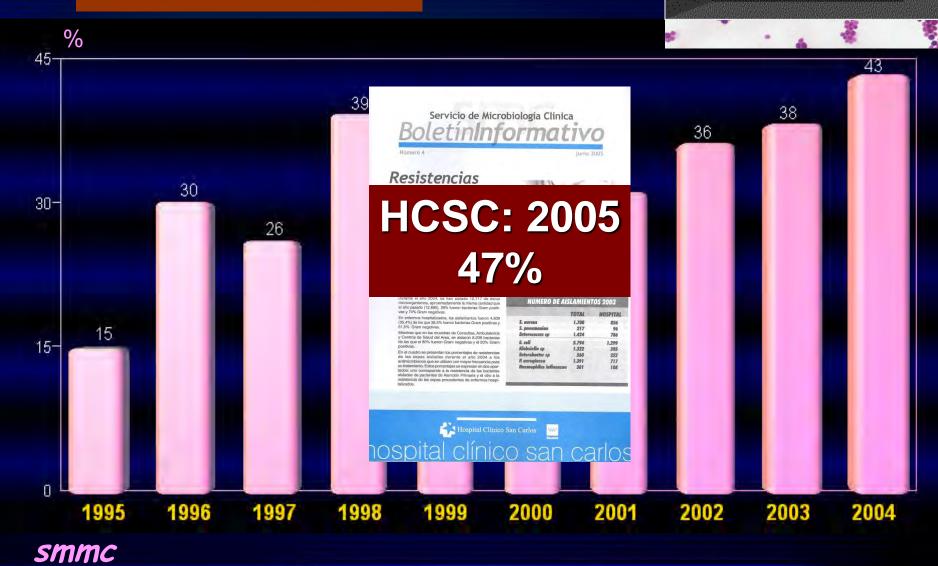
La Infección NO protege frente a reinfección

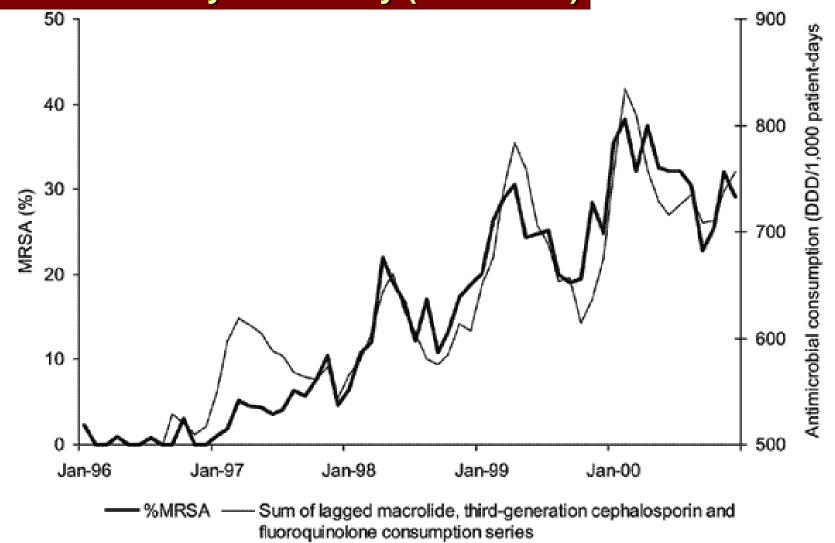
KB Laupland et al., 2003



SARM Evolución de las resistencias (España)

O. Cuevas et al., 2004


S. aureus en HCSC SARM/SASM aislados



MRSA in Madrid

Uso de antimicrobianos y % MRSA Aberdeen Royal Infirmary (1996-2000)

CA-MRSA

- Dificultad en establecer el origen ("Community-Onset MRSA")
- Sensibilidad a Ab: clindamicina, macrólidos, cotrimoxazol, tetracyclinas, flúorquinolonas

Staphylococcal Cassette Chromosome (SCC)

mecA PBP2a

TIPO	RESISTANCE	ORIGIN
Tipo I	mecA	HOSPITAL
Tipo II	múltiples determinantes resistancia	HOSPITAL
Tipo III	múltiples determinantes resistancia	HOSPITAL
Tipo IV	mecA	COMUNIDAD
Tipo V	mecA	COMUNIDAD

- Esporádico
- Resistencia heterogénea a meticilina
- Habitualmente clonales (ST80, Francia, Alemania, Grecia, Suiza...)
- Infecciones de piel en sanos (infraestimados)
- Producción de leucocidina Panton-Valentine (mortalidad neumonía: 75%)

Clinical Outbreak of Linezolid-Resistant Staphylococcus aureus in an Intensive Care Unit

M Sánchez et al., JAMA 2010

13 abril-27 junio 2008 12 pacientes

Linezolid >8 mg/L
Tigeciclina S
Daptomicina S
Vancomicina S
Teicoplanina S

OBJETIVO DE LA MODIFICACION Cfr

DE LINEZOLID

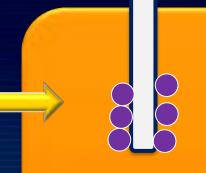
The state of the

A2503

LUGAR DE ACCION

Table 1. Antibiotic sensitivity profile of the MRSA strain CM05 and of the laboratory S. aureus strain RN4220 transformed with the cfr-expressing plasmid pLXM1.

Antibiotic/ Strain	Linezolid	Erythromycin	NC) MOR	TALIE	DAD F	RELA	ACIC	DNAE)A mcomycin	Teicoplanin	Trimethoprim/ sulfamethoxazole
MRSA	16/R	> 64/R					SKITI		^ D O	s	0.5/S	0.5/9.5
CM05 ATCC 29213	2	0.12		FACIL	MENT	ECC	וואכ	YUL	ADO		0.5	0.06/1,18
RN4220	4	nd	nd	> 10	nd	nd	nd	nd	nd	nd	nd	nd
(pLXM1) RN4220 (pLI50)	1	nd	nd	> 10	nd	nd	nd	nd	nd	nd	nd	nd


a. A control S. aureus strain.

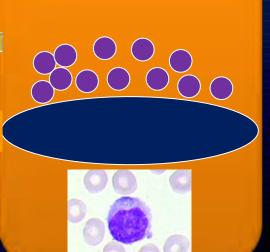
b. Cells transformed with an empty vector.
 MIC, minimal inhibitory concentration; nd, no data.

Mecanismos de Supervivencia/Invasión

- Inhibición de la fagocitosis y lisis
- Diseminación torrente sanguíneo
- Formación de abcesos/biofilms

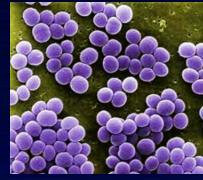
Acido teicoico (biofilm)

Enzimas


Lucocidina

+ Coagulasa: Abceso

Hialuronidasa (t. conectivo) Lipasa, enzimas proteolíticos



Coagulasa: coagula la sangre: Cinturón de fibrina

Mecanismos de Supervivencia/Invasión

- Inhibición de la fagocitosis y lisis
- Diseminación torrente sanguíneo
- Formación de abcesos/biofilms

Toxinas

Del griego *Toxicon* (flecha envenenada)

- Exfoliatina (Células de la piel): Síndrome de la piel escaldada
- α-Toxina, β-Toxina...hematíes, leucocitos...
- TSST-1 (plásmido): Síndrome tóxico. Tampones vaginales capturan gran cantidad de hierro + oxígeno → >toxina

FACTORES DE VIRULENCIA

PROTEINAS DE SUPERFICIE

- Adhesión a fibrinógeno
 - Clumping factor (ClfA / B)
- Adhesión a fibrobectina
 - Fibronetin Binding Proteins (FnBP A y B)
- Proteínas secuestradoras de Hierro y Manganeso

\Rightarrow

FACTORES PARA EVITAR EL SISTEMA INMUNE

- Cápsula anti-opsonizante (polisacáridos CP5 y CP8)
- Inhibidores de la quimiotaxis neutrófilos y del Complemento
- Proteínas que se unen a las Inmunoglobulinas (Staph prot. A)
- Enzimas para sobrevivir en el fagosoma de neutrófilos (superóxido-dismutasa)
- Invasinas, hialuronidasa, staphylokinasa
- Toxinas: Enterotoxina A y B

α-Toxina

Leucocidina de Panton-Valentine (necrosis piel, pulmón..)

- 1 sólo antígeno vs múltiples antígenos

Eficaz frente a S. pneumoniae, H. influenzae o N. meningitidis

VENTAJAS:

- -Múltiples Inmunidad humoral + celular
- -Mayor probabilidad de respuesta
- -Diferentes sitios de infección (pulmón, sangre, piel) con ≠ focos Ag.

- Fallos:

- StaphVAX: Vacuna bivalente, polisacárida, conjugada No reduce la incidencia en hemodiálisis CON elevados títulos opsonofagocíticos anti-cápsula (≠ S. pneumoniae) Algunos NO tienen cápsula (USA 300)
- MSD: Monovalente basada en IsdB (captura de hierro)

Vacunas basadas en proteínas secuestradoras de Hierro

Fase II: FALLO

Multicomponentes: SPMSD, Pfizer, Novartis (Fase I-II)

GSK: Pentavalente

- Polisacáridos capsulares CP5 y CP8
- Ácido Teicoico (pared celular)
- Leucocidina Panton-Valentine
- α-hemolisina

PFIZER: Tetravalente

Polisacáridos CP5 y CP8

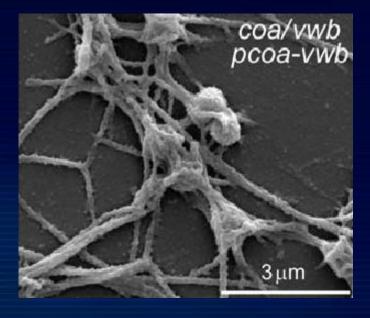
Clumping factor A (ClfA)

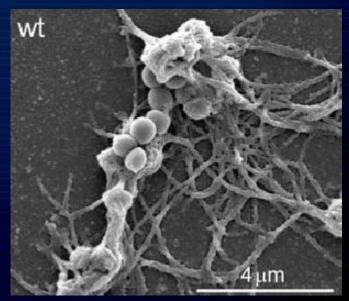
Manganese Transporter C (MntC)

FASE I

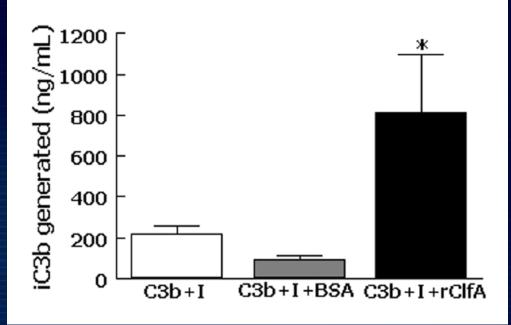
FASE II

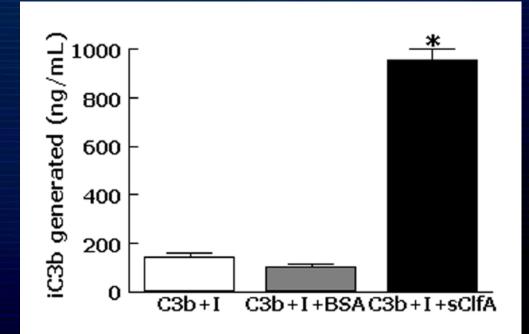
1, 2: POLISACÁRIDOS CP5 y CP8

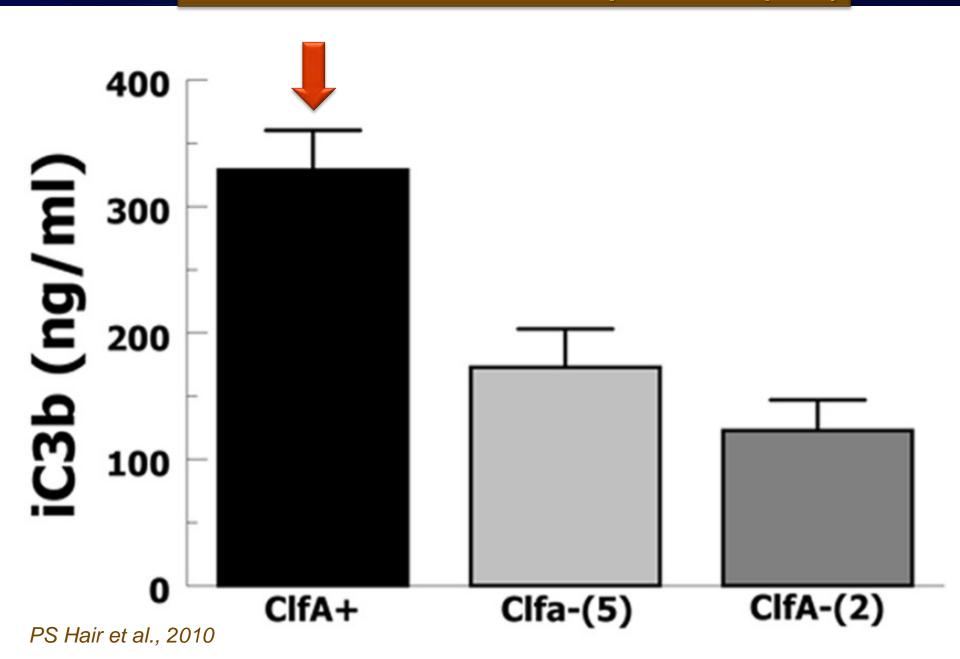

- Evasión de la fagocitosis
- La mayoría expresa uno u otro
- O-Acetilación (se expresan pronto)
 Indica beneficio para la bacteria


- Problema: No está claro que en la infección se produzcan Ac. Protectores
 - La infección no protege frente a la reinfección
 - 10-30% de abscesos recurren
 - 50-70 % HIV+ recurren (defecto inmunidad celular)

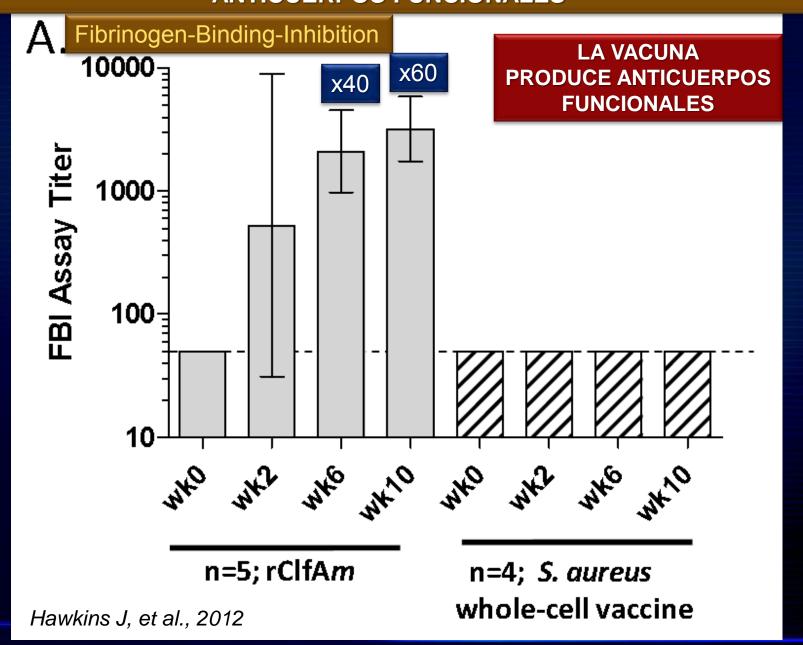
3. CLUMPING FACTOR A

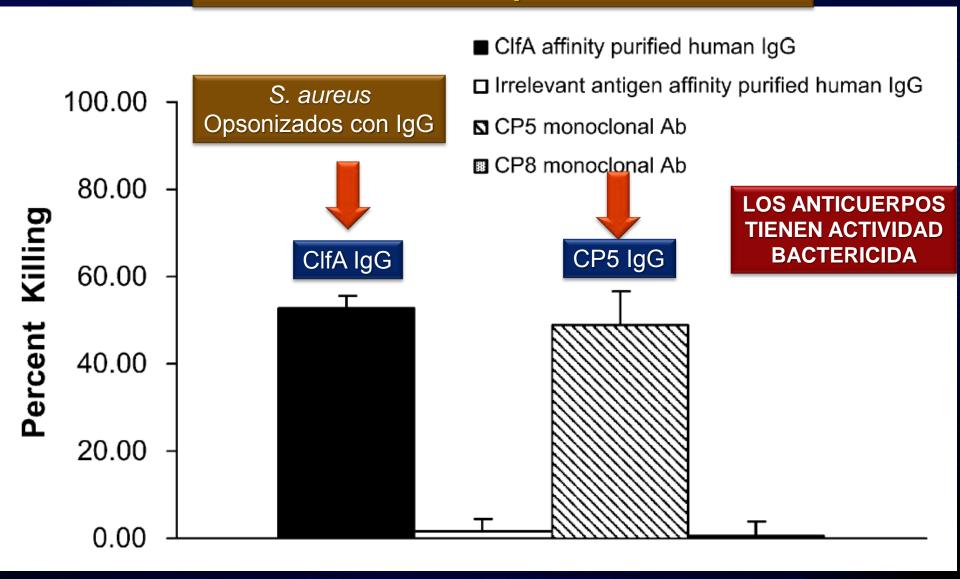

- Unión a Fibrinógeno
- Conservado en el 90% de las cepas
- Unión a fibrinógeno:
 - Promueve la unión de la fibrina
 - La unión de los patógenos a las plaquetas
- Pfizer desarrolla test de inhibición de la Unión al Fibrinógeno (FBI)
- Unión al Factor del Complemento

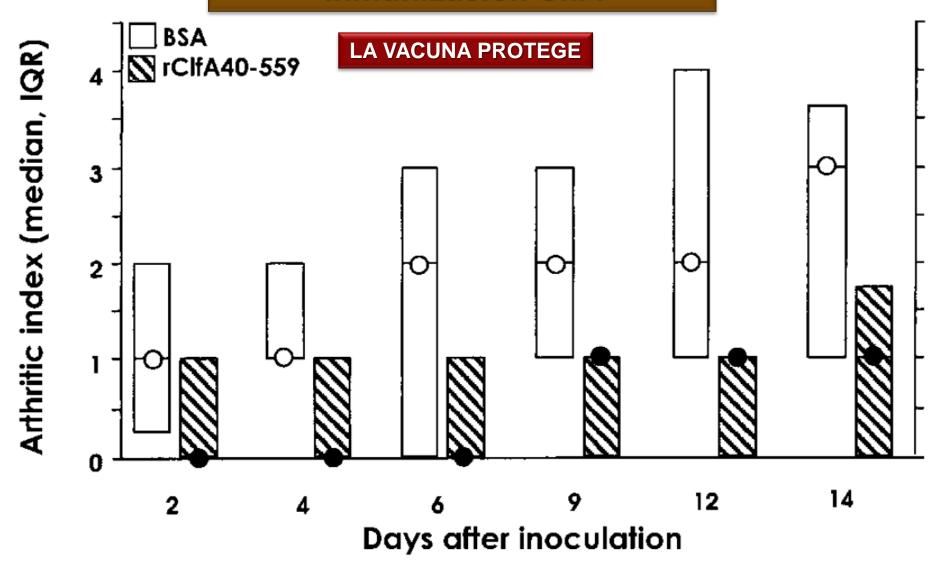


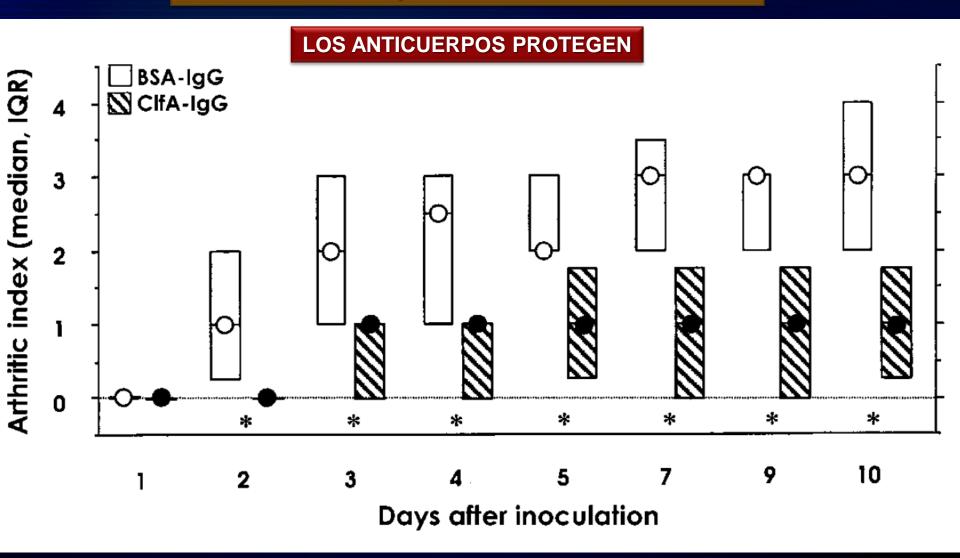

3. CLUMPING FACTOR A

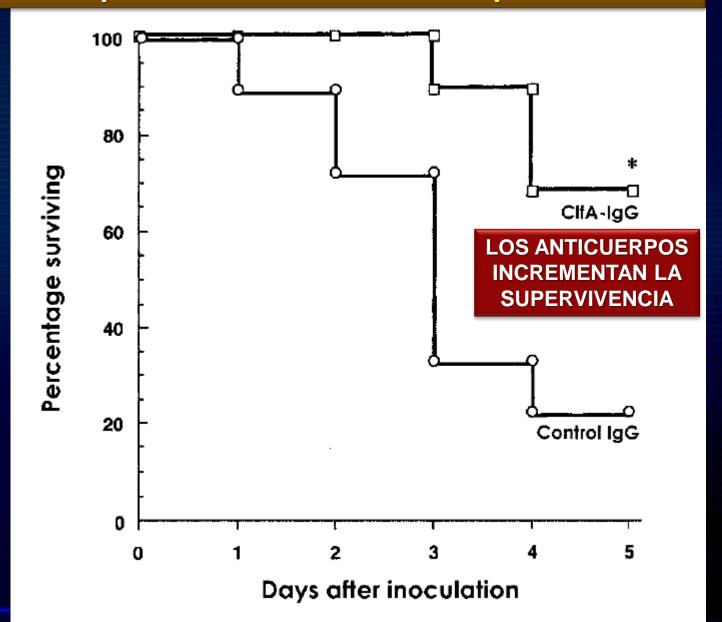
INACTIVACIÓN DEL COMPLEMENTO

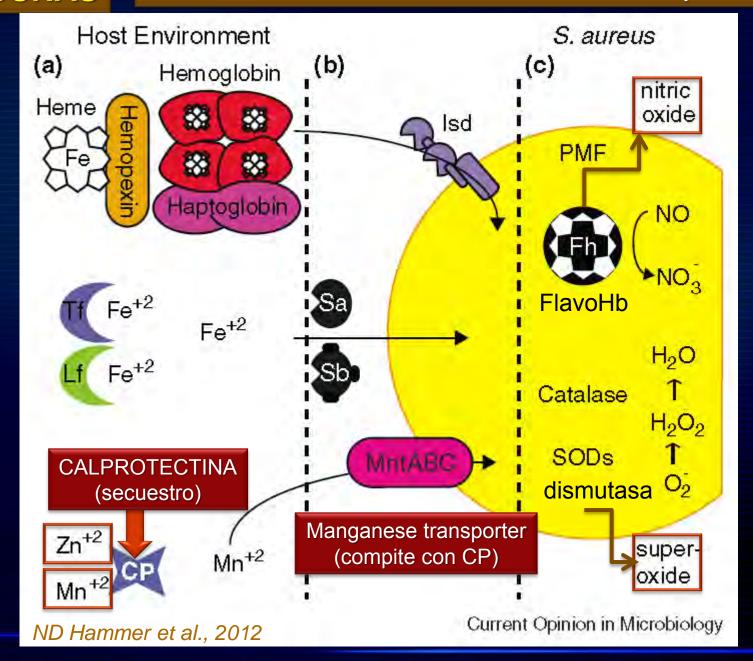



ClfA e inactivación del Complemento (C3b)

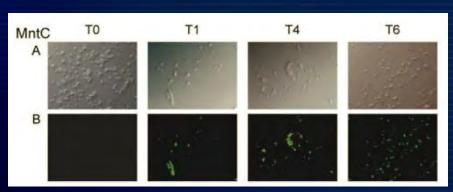

VACUNACION DE PRIMATES CON CIFA Y BACTERIAS INACTIVADAS POR CALOR ANTICUERPOS FUNCIONALES


Actividad bactericida opsonofagocítica de los anticuerpos anti-ClfA


Desarrollo de artritis en ratones Inmunización CIfA


Desarrollo de artritis en ratones Inmunización pasiva con Ac anti-ClfA

Supervivencia de ratones inmunizados pasivamente con anticuerpos anti-ClfA



4. TRANSPORTADOR DE MANGANESO C (MntC)

4. TRANSPORTADOR DE MANGANESO C (MntC)

Lipoproteína muy conservada – Adquiere Manganeso

AS Anderson et al., 2012

MntC secuestra el manganeso

FAGOSOMA (macrófagos y neutrófilos)

Superóxido-dismutasa + **Manganeso**

Oxidan (destruyen) la bacteria

Los anticuerpos actúan:

Adquisición de nutrientes Supervivencia en el fagosoma

USO DE LAS VACUNAS ACTUALMENTE DISPONIBLES

TRIPLE VIRICA: COBERTURAS EN ESPAÑA Primera (1-2 años) and booster (3-6 años)

(Comunidad de Madrid: 1ª dosis 15 meses 🛑 12 meses/ 4 años)

DESAFÍOS EN EL DESARROLLO DE VACUNAS EN EL SIGLO XXI

Consenso

Juan José Picazo¹
Luis Miguel Alonso²
Javier Arístegui³
Jose María Bayas⁴
Jesús Sanz⁵
Piedad del Amo⁶
Jose Luis Cobos⁷
Jaime Rodriguez-Salazar⁸

Consenso sobre la vacunación frente a la gripe en el personal sanitario

¹Sociedad Española de Quimioterapia, Infección y Vacunas (SEQ)

²Asociación Española de Enfermería y Salud (AEES)

³Asociación Española de Pediatría (AEP)

⁴Asociación Española de Vacunología (AEV)

Margarita S < 25% DE LOS SANITARIOS VACUNADOS

Jordi Carratalá¹¹ Jose Luis Cañada¹²

Juan González-del Castillo 13

Pablo Aldaz¹⁴

Fernando Pérez-Escanilla 15

José Barberán 16

Alejandro Rodriguez¹⁷

Dolores Vigil-Escribano¹⁸

Javier Espinosa-Arranz¹⁹

José Blanquer²⁰

Fernando González-Romo²¹

- Sociedad Espanola de Geriatria y Gerontologia (SEGG)
- ⁹Sociedad Española de Ginecología y Obstetricia (SEGO)
- 10 Sociedad Española de Hematología y Hemoterapia (SEHH)
- Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC)
- ¹²Sociedad Española de Médicos de Atención Primaria (SEMERGEN)
- ¹³Sociedad Española de Medicina de Urgencias y Emergencias (SEMES)
- ¹⁴Sociedad Española de Medicina Familiar y Comunitaria (SEMFYC)
- ¹⁵Sociedad Española de Médicos Generales y de Familia (SEMG)
- ¹⁶Sociedad Española de Medicina Interna (SEMI)
- ¹⁷Sociedad Española de Medicina Intensiva, Crítica y Unidades Coronarias (SEMICYUC)
- ¹⁸Sociedad Española de Medicina Preventiva, Salud Pública e Higiene (SEMPSPH)
- 19Sociedad Española de Oncología Médica (SEOM)
- ²⁰Sociedad Española de Patologia Respiratoria (SEPAR)
- ²¹Universidad Complutense de Madrid (UCM).

I ENCUENTRO MULTIDISCIPLINAR EN TORNO A LA PREVENCION DE LA GRIPE PREVENCION DE LA GRIPE EN SANITARIOS

Madrid, 30 de Octubre de 2012

Auditorio Ramón y Cajal Facultad de Medicina. Universidad Complutense de Madrid Av. Complutense s/n. 28040 Madrid

INSCRIPCIÓN GRATUITA EN

http://www.congresoseq.es/summit2012/

(Incluye documentación, café y buffet)

A todos los asistentes se les emitirá un Certificado de Asistencia Solicitado Reconocimiento de Actividad de Interés Sanitario